41 research outputs found

    Comparing connected structures in ensemble of random fields

    No full text
    International audienceVery different connectivity patterns may arise from using different simulation methods or sets of parameters, and therefore different flow properties. This paper proposes a systematic method to compare ensemble of categorical simulations from a static connectivity point of view. The differences of static connectivity cannot always be distinguished using two point statistics. In addition, multiple-point histograms only provide a statistical comparison of patterns regardless of the connectivity. Thus, we propose to characterize the static connectivity from a set of 12 indicators based on the connected components of the realizations. Some indicators describe the spatial repartition of the connected components, others their global shape or their topology through the component skeletons. We also gather all the indicators into dissimilarity values to easily compare hundreds of realizations. Heat maps and multidimensional scaling then facilitate the dissimilarity analysis. The application to a synthetic case highlights the impact of the grid size on the connectivity and the indicators. Such impact disappears when comparing samples of the realizations with the same sizes. The method is then able to rank realizations from a referring model based on their static connectivity. This application also gives rise to more practical advices. The multidimensional scaling appears as a powerful visualization tool, but it also induces dissimilarity misrepresentations: it should always be interpreted cautiously with a look at the point position confidence. The heat map displays the real dissimilarities and is more appropriate for a detailed analysis. The comparison with a multiple-point histogram method shows the benefit of the connected components: the large-scale connectivity seems better characterized by our indicators, especially the skeleton indicators

    OM-MADE:An open-source program to simulate one-dimensional solute transport in multiple exchanging conduits and storage zones

    Get PDF
    International audienceOM-MADE (One-dimensional Model for Multiple Advection, Dispersion, and storage in Exchanging zones) is an open-source python code for simulating one-dimensional solute transport in multiple exchanging conduits and storage zones in steady-state flow conditions. It aims at helping the interpretation of multi-peaked skewed breakthrough curves (BTCs) that can be observed in tracer tests conducted in karstic systems. OM-MADE is based on the resolution of classical mass conservation equations. In OM-MADE, all parallel and exchanging flow zones are divided along the direction of flow into reaches, in which all model parameters are kept constant. The total flowrate may be modified through lateral in and outflows. The solute may also be affected by decay processes either in mobile or immobile zones. Each reach is subdivided into discrete segments of equal length. The partial differential equations can be solved using two second order schemes, one based on an operator-split approach, the other on Crank-Nicholson pondered scheme. A verification is performed against analytical solutions, OTIS software [Runkel, 1998], and the dual-advection dispersion equation (DADE) proposed by Field and Leij [2012]. An application to a tracer test carried out in the karstic area of Furfooz (Belgium) is then performed to reproduce the double-peaked positively skewed BTC that has been observed. It constitutes a demonstration of the software capacities in the case of two reaches and three exchanging zones, among which two are mobile ones and one represents a storage zone. It thus permits to verify numerically the consistency of the conceptual interpretation of the observed BTC

    Tracing Noble Gas Radionuclides in the Environment

    Full text link
    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA)
    corecore